Estimation of Concrete Strength Using Improved Probabilistic Neural Network Method
نویسندگان
چکیده
منابع مشابه
Advanced Probabilistic Neural Network for the Prediction of Concrete Strength
Advanced Probabilistic Neural Network for the Prediction of Concrete Strength Doo Kie Kim1, Seong Kyu Chang1 and Sang Kil Chang1 Summary Accurate and realistic strength estimation before the placement of concrete is highly desirable. In this study, the advanced probabilistic neural network (APNN) was proposed to reflect the global probability density function by summing the heterogeneous local ...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملEVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
متن کاملMODELING FLEXURAL STRENGTH OF EPS LIGHTWEIGHT CONCRETE USING REGRESSION, NEURAL NETWORK AND ANFIS
Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled...
متن کاملrunoff estimation using artificial neural network method
runoff is one of the major components of calculating water resource processes and is the main issue in hydrology. many concept models are used to predict the amount of runoff, which in most cases depend on topographical and hydrological data. conventional models are not appropriate for areas in which there is little hydrological data. changes in runoff are nonlinear, meaning it is time & space ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Concrete Institute
سال: 2005
ISSN: 1229-5515
DOI: 10.4334/jkci.2005.17.6.1075